Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosens Bioelectron ; 228: 115197, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2269328

ABSTRACT

Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic source. The use of a photonic crystal substrate for interferemetric scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosome, and ferritin protein.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Microscopy , Gold/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , SARS-CoV-2
2.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1586041

ABSTRACT

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Immobilized Nucleic Acids/chemistry , SARS-CoV-2/isolation & purification , Biosensing Techniques/instrumentation , Humans , Limit of Detection , Microscopy/methods , Optics and Photonics/instrumentation , Optics and Photonics/methods , SARS-CoV-2/chemistry , Saliva/virology , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL